MIXING IN NUMERICAL MODElS OF MANTLE CONVECTION INCORPORATING PLATE KINEMATICS

نویسندگان

  • Michael Gurnis
  • Geoffrey F. Davies
چکیده

The process by which subducted lithosphere is mixed by mantle convection is investigated in numerical calculations. The results show that the observed isotopic heterogeneity of mantle sources and their ancient (1-2 b.y.) apparent ages are consistent with convective mixing. Passive tracers, which are introduced below "trenches," are efficiently dispersed, but nonetheless, heterogeneities in tracer density with a large range of length scales are observed to persist for 40 or more transit times (one transit time is the time to travel the fluid depth with the boundary velocity). In particular, there is a strong tendency to form high-density folds of the tracer strings, which persist much longer than simple shearing indicates. The folds persist because there is a strong tendency for material that enters the flow at the margins of cells to be transferred to adjacent cells, where it is "unmixed." When the simulations are scaled to the whole mantle, the tight clumps (folds) of tracers are shown to persist for up to 1-2 b .y. There is also a tendency for large-scale convection cells to remain isolated from recycled material for 1-2 b.y. These results are consistent with the significant chemical heterogeneity of the mantle as revealed by isotopic studies of oceanic basalts. Despite the spatial heterogeneity in tracer density, the average time tracers remain in the box from subduction at trenches to sampling at ridges (i.e., the residence time) is well constrained and within 20% of the mean residence time expected from an analytic model in which tracers are assumed to be sampled randomly. Model ages of the mantle that explicitly incorporate increased convection rates in the past and assume random sampling of heterogeneities bracket the 2 b.y. apparent Pb-Pb and Rb-Sr isochrons of midocean ridge basalts and oceanic island basalts. The conclusion of persistent spatial heterogeneity is different from the conclusions drawn from other studies. The different conclusions result, primarily, from our emphasis on the details of spatial variations as opposed to some average of the mixing, from a difference in flow unsteadiness, and from the different ways tracers have been introduced into the flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics

We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics,...

متن کامل

Slabs in the lower mantle and their modulation of plume formation

[1] Numerical mantle convection models indicate that subducting slabs can reach the core-mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude model slabs from reaching the CMB. We fi...

متن کامل

Top driven asymmetric mantle convection

The role of decoupling in the low-velocity zone is crucial for understanding plate tectonics and mantle convection. Mantle convection models fail to integrate plate kinematics and thermodynamics of the mantle. In a first gross estimate, we computed at about 306 km/yr the volume of the plates lost along subduction zones. Mass balance predicts that slabs are compensated by broad passive upwelling...

متن کامل

Towards a realistic simulation of plate margins in mantle convection

We have incorporated faults as plate margins into time-dependent mantle convection models by using a mixed Eulerian and Lagrangian finite element formulation. Plate margins in our models can migrate dynamically in response to variations in mantle buoyancy, and this enables us to study the dynamics of mantle and plates including changes in plate size. Convection models in a cylindrical geometry ...

متن کامل

Plate tectonics and convection in the Earth's mantle: toward a numerical simulation

Plate tectonics is a kinematic description of Earth that treats the outer shell of its mantle as a number of plates or rigid spherical caps that move with respect to each other (see the “Plate tectonics” sidebar). The mantle is the outer, solid 3,000-km-thick shell that overlies Earth’s fluid outer core. An enormous amount of geological and geophysical data has gone into determining the motion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007